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Abstract The quantum mechanics of a diatomic molecule in a noncentral potential
of the type V (r) = Vθ (θ)/r2 + Vr (r) are investigated analytically. The θ -dependent
part of the relevant potential is suggested for the first time as a novel angle-dependent

(NAD) potential Vθ (θ) = h̄2

2µ

(
γ+β sin2 θ+α sin4 θ

sin2 θ cos2 θ

)
and the radial part is selected as

the Coulomb potential or the harmonic oscillator potential, i.e., Vr (r) = −H/r or
Vr (r) = Kr2, respectively. Exact solutions are obtained in the Schrödinger picture
by means of a mathematical method named the Nikiforov–Uvarov (NU). The effect
of the angle-dependent part on the solution of the radial part is discussed in several
values of the NAD potential’s parameters as well as different values of usual quantum
numbers.

Keywords Diatomic molecule · Novel angle-dependent (NAD) potential · Coulomb
potential and harmonic oscillator · Nikiforov–Uvarov method · Exact solution

1 Introduction

The exact solutions of the Schrödinger equation play an important role in extracting
the quantum treatments in various physical and chemical applications including those
in molecular physics. For example, the exact solutions of the Schrödinger equation
for a particle in the Coulomb potential or the harmonic oscillator are an important
milestone in quantum chemistry [1,2]. The problem of a particle in the three-dimen-
sional ring-shaped potential has been transformed into the problem of a coupled
pair of Schrödinger equations for two-dimensional harmonic oscillators with inverse
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quadratic and square potentials. Numerous articles have been deal with a nonrelativistic
quantum mechanical study of a dynamical system which generalizes the Kepler–
Coulomb, the Hartmann and the isotropic harmonic oscillator systems in three dimen-
sions [3]. The concepts of the Coulomb potential or the harmonic oscillator give us a
very good first approximation for understanding the spectroscopy and the structure of
diatomic molecules in their ground electronic states. Although most of these potentials
are central, there are some noncentral separable (in spherical coordinates) potentials
[4]. The study of exact solutions of the Schrödinger equation with noncentral potentials
is of considerable interest. The Hartmann potential introduced in 1972 by Hartmann
[5] is one of the noncentral potentials, which can be realized by adding a potential
proportional to the Coulomb potential. This potential was suggested to describe the
energy spectrums of ring-shaped molecules like benzene and cyclic polyenes. The
exact motion of a diatomic molecule in a new class of noncentral potentials was
studied by Hautot [6] to compute classical and quantum trajectories. The accidental
degeneracy occurring in the quantum mechanical treatment of the ring-shaped poten-
tial was explained by constructing an SU(2) dynamical invariance algebra. Moreover,
the classical trajectories were calculated for two Hamiltonian systems with ring shaped
potentials [7–10]. A new ring-shaped potential obtained by replacing the Coulomb part
of the Hartmann potential with a harmonic oscillator term was investigated by Quesne
[11] to find discrete spectrums and integrals of motion. The motion of a particle in
a Coulomb potential and a harmonic oscillator plus Aharonov–Bohm potential was
investigated from a classical and a quantum mechanical viewpoint [12–15]. A new
exactly solvable noncentral ring-shaped potential was proposed by Dong et al. [16]
and they were studied its quantum characteristics of bound and scattering states. The
zero-energy quantum states for a class of noncentral potentials have been obtained
in the parabolic potential barrier [17]. These states are used in a growing number of
physical applications. Numerous examples, especially in an analysis of vortices, can
be found in the literature [18]. In addition, some other interesting investigations related
to the noncentral potentials have been carried out [19,20].

In the present study, a novel angle-dependent (NAD) potential is suggested for the
fist time as an alternative of the Hartmann-type potential. As one of exactly solvable
problems in quantum mechanics, this potential is defined as follows

Vθ (θ)

r2 = h̄2

2µr2

(
γ + β sin2 θ + α sin4 θ

sin2 θ cos2 θ

)
, (1)

where α, β and γ are arbitrary constant values. The factor h̄2/2µ is introduced in view
of the future favourableness. An important aspect of the use of the NAD potential
is to study the rotational-vibrational dynamics of a diatomic molecule in noncen-
tral potentials. Moreover, ro-vibrating energy states of a diatomic molecule can be
exactly calculated by means of a radial potential connected by the NAD potential.
Hence, a close connection between both the Coulomb potential plus the NAD potential
and the harmonic oscillator plus the NAD potential can be established to compare
the energy states of diatomic molecules. Such a connection does not give a surpris-
ing result because many relations between the Coulomb potential and the harmonic
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oscillator have already known. However, the addition of a noncentral potential of the

type
(
γ+β sin2 θ+α sin4 θ

r2 sin2 θ cos2 θ

)
makes this connection still deeper by smoothing out many

discrepancies between the Coulomb potential and the harmonic oscillator [11]. The
Coulomb potential plus the NAD potential or the harmonic oscillator plus the NAD
potential are given in the following forms, respectively,

V (r) = − H

r
+ h̄2

2µr2

(
γ + β sin2 θ + α sin4 θ

sin2 θ cos2 θ

)
, for Coulomb + NAD (2)

V (r) = Kr2 + h̄2

2µr2

(
γ + β sin2 θ + α sin4 θ

sin2 θ cos2 θ

)
, for Harmonic oscillator+NAD,

(3)

where H and K are real parameters with respect to the relevant potentials and r rep-
resents spherical coordinates r , θ and φ. The solution of the Schrödinger equation for
the Coulomb potential plus the NAD potential or the harmonic oscillator plus the NAD
potential gives the energy states of a diatomic molecule. An alternative method intro-
duced to find a solution of the Schrödinger equation was presented by Nikiforov and
Uvarov [21]. The proposed method is advantageously applied for finding the energy
states of a diatomic molecule. In addition to this valuable method, other methods
used to obtain the solution of the Schrödinger equation are given as the path integral
approach [22], hypergeometric series method [23], the SUSY quantum mechanics and
shape invariance method [24], L2-series solutions for a large class of noncentral poten-
tials [25], a group-theoretical study on the Coulomb potential plus an angle-dependent
potential [26] and other algebraic approaches [27–39]. In most of these studies, the
eigenvalues and eigenfunctions are obtained via separation of variables in spherical
coordinates.

One of the purposes of this paper is to investigate the contribution of the parameters
come from a novel angle-dependent (NAD) potential into the energy spectrum of a
particle (or diatomic molecule) in the Coulomb potential or the harmonic oscillator.
To make this analysis, the NAD potential is added to the radial parts of the Coulomb
potential and the harmonic oscillator as an angle-dependent part. The solution of the
Schrödinger equation for these combined potentials is exactly obtained by using a sys-
tematical solution method which is introduced by Nikiforov–Uvarov (NU) [21]. The
concept of the Nikiforov–Uvarov (NU) method is that it can be used to obtain exact
solutions of such noncentral but separable potentials in an algebraic viewpoint. In this
method, the angle-dependent part as well as the radial part of the Schrödinger equa-
tion can be separately investigated by using the idea of exactly solvability. The details
of the NU method and the solutions of the Schrödinger equation for the Coulomb
potential plus the NAD potential and the harmonic oscillator plus the NAD potential
are given in the next sections. Moreover, the importance of the NAD potential is indi-
cated in quantum chemistry to describe ring-shaped molecules like benzene because
its mathematical form likes to the angle-dependent part of the Hartmann potential or
a generalized Ahanorov–Bohm oscillator system. The relevant remarks on the NAD
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potential are made in the next sections where the dependence of the parameters and
the various angles of the potential on the energy spectrum is also discussed.

2 The details of the Nikiforov–Uvarov method

The Nikiforov–Uvarov (NU) method is based on solving the hypergeometric type
second-order differential equations by means of the special orthogonal functions [40].
For a given potential, the Schrödinger or the Schrödinger-like equations in spherical
coordinates are reduced to a generalized equation of hypergeometric type with an
appropriate coordinate transformation r → s or θ → s and then they are solved
systematically to find the exact or particular solutions. The main equation which is
closely associated with the method is given in the following form [21]

ψ ′′(s)+ τ̃ (s)

σ (s)
ψ ′(s)+ σ̃ (s)

σ 2(s)
ψ(s) = 0, (4)

where σ(s) and σ̃ (s) are polynomials at most second-degree, τ̃ (s) is a first-degree
polynomial and ψ(s) is a function of the hypergeometric type.

By taking ψ(s) = φ(s)y(s) and choosing an appropriate function φ(s), Eq. 4 is
reduced to a comprehensible form;

y′′(s)+
(

2
φ′(s)
φ(s)

+ τ̃ (s)

σ (s)

)
y′(s)+

(
φ′′(s)
φ(s)

+ φ′(s)
φ(s)

τ̃ (s)

σ (s)
+ σ̃ (s)

σ 2(s)

)
y(s) = 0. (5)

The coefficient of y′(s) is taken in the form τ(s)/σ (s), where τ(s) is a polynomial of
degree at most one, i.e.,

2
φ′(s)
φ(s)

+ τ̃ (s)

σ (s)
= τ(s)

σ (s)
, (6)

and hence the most regular form is obtained as follows,

φ′(s)
φ(s)

= π(s)

σ (s)
, (7)

where

π(s) = 1

2
[τ(s)− τ̃ (s)]. (8)

The most useful demonstration of Eq. 8 is

τ(s) = τ̃ (s)+ 2π(s). (9)
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The new parameter π(s) is a polynomial of degree at most one. In addition, the term
φ′′(s)/φ(s) which appears in the coefficient of y(s) in Eq. 5 is arranged as follows

φ′′(s)
φ(s)

=
(
φ′(s)
φ(s)

)′
+

(
φ′(s)
φ(s)

)2

=
(
π(s)

σ (s)

)′
+

(
π(s)

σ (s)

)2

. (10)

In this case, the coefficient of y(s) is transformed into a more suitable arrangement
by taking the form in Eq. 7;

φ′′(s)
φ(s)

+ φ′(s)
φ(s)

τ̃ (s)

σ (s)
+ σ̃ (s)

σ 2(s)
= σ̄ (s)

σ 2(s)
, (11)

where

σ̄ (s) = σ̃ (s)+ π2(s)+ π(s)[̃τ(s)− σ ′(s)] + π ′(s)σ (s). (12)

Substituting the right-hand sides of Eqs. 6 and 11 into Eq. 5, an equation of the same
type as Eq. 4 is obtained as

y′′(s)+ τ(s)

σ (s)
y′(s)+ σ̄ (s)

σ 2(s)
y(s) = 0. (13)

As a consequence of the above algebraic transformations, the functional form of Eq. 4
is protected by following a systematic way. Therefore, the transformations allow us
to replace the function of the hypergeometric type ψ(s) by the substitution φ(s)y(s),
where φ(s) satisfies Eq. 7 whit an arbitrary linear polynomial π(s). If the polynomial
σ̄ (s) in Eq. 13 is divisible by σ(s), i.e.,

σ̄ (s) = λσ(s), (14)

where λ is a constant, Eq. 13 is reduced to an equation of hypergeometric type

σ(s)y′′(s)+ τ(s)y′(s)+ λy(s) = 0, (15)

and also its solution is given as a function of hypergeometric type. To determine the
polynomial π(s), Eq. 12 is compared with Eq. 14 and then a quadratic equation for
π(s) is obtained as follows,

π2(s)+ π(s)[̃τ(s)− σ ′(s)] + σ̃ (s)− kσ(s), (16)

where

k = λ− π ′(s). (17)
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The solution of this quadratic equation for π(s) yields the following equality

π(s) = σ ′(s)− τ̃ (s)

2
±

√(
σ ′(s)− τ̃ (s)

2

)2

− σ̃ (s)+ kσ(s). (18)

In order to obtain the possible solutions according to the plus and minus signs of
Eq. 18, the parameter k within the square root sign must be known explicitly. To pro-
vide this requirement, the expression under the square root sign has to be the square of
a polynomial, since π(s) is a polynomial of degree at most 1. In this case, an equation
of the quadratic form is available for the constant k. Setting the discriminant of this
quadratic equal to zero, the constant k is determined clearly. After determining k, the
polynomial π(s) is obtained from Eq. 18, and then τ(s) and λ are also obtained by
using Eqs. 8 and 17, respectively.

A common trend which is followed to generalize the solutions of Eq. 15 is to show
that all the derivatives of functions of hypergeometric type are also of hypergeometric
type. For this purpose, Eq. 15 is differentiated by using the representation v1(s) = y′(s)

σ (s)v′′
1 (s)+ τ1(s)v

′
1(s)+ µ1v1(s) = 0, (19)

where τ1(s) = τ(s) + σ ′(s) and µ1 = λ + τ ′(s). τ1(s) is a polynomial of degree at
most 1 and µ1 is independent of the variable s. It is clear that Eq. 19 is an equation
of hypergeometric type again. By taking v2(s) = y′′(s) as a new representation, the
second derivation of Eq. 15 becomes

σ(s)v′′
2 (s)+ τ2(s)v

′
2(s)+ µ2v2(s) = 0, (20)

where

τ2(s) = τ1(s)+ σ ′(s) = τ(s)+ 2σ ′(s), (21)

µ2 = µ1 + τ ′
1(s) = λ+ 2τ ′(s)+ σ ′′(s). (22)

In a similar way, an equation of hypergeometric type for vn(s) = y(n)(s) is constructed
as a family of particular solutions of Eq. 15 corresponding to a given λ;

σ(s)v′′
n (s)+ τn(s)v

′
n(s)+ µnvn(s) = 0, (23)

and here the general recurrence relations for τn(s) andµn are found as follows, respec-
tively,

τn(s) = τ(s)+ nσ ′(s), (24)

µn = λ+ nτ ′(s)+ n(n − 1)

2
σ ′′(s). (25)
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When µn = 0, Eq. 25 becomes as follows

λ = λn = −nτ ′(s)− n(n − 1)

2
σ ′′(s), (n = 0, 1, 2, . . .) (26)

and then Eq. 23 has a particular solution of the form y(s) = yn(s) which is a poly-
nomial of degree n. To obtain an eigenvalue solution through the NU method, the
relationship between λ and λn must be set up by means of Eqs. 17 and 26.

3 The separation in spherical coordinates

In spherical coordinates, the Schrödinger equation for a diatomic molecule moving
within the Coulomb or harmonic oscillator plus NAD potentials given in Eq. 2 or 3,
respectively, can be explicitly turned into the more useful one;

{
1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2

[
4x(1 − x)

∂2

∂x2 + 2(2 − 3x)
∂

∂x
+ 1

x

∂2

∂ϕ2

]

+ 2µ

h̄2 (E − V (r))
}
(r) = 0. (27)

Introducing a new variable x = sin2 θ . The energy E in Eq. 27 is real and it is either
discrete for bound states (E < 0) or continuous for scattering states (E > 0). This
equation is separable for potentials of the following form,

V (r) ≡ V (r, θ, ϕ) = Vr (r)+ 1

r2

[
Vθ (x)+ 1

x
Vϕ(ϕ)

]
. (28)

If the wave function is written as (r) ≡ (r, θ, ϕ) = r−1 R(r)�(θ)�(ϕ), the wave
equation in Eq. 27 for the potential given in Eq. 2 or 3 can be separated to a set of
second-order differential equations in all three coordinates as follows:

(
d2

dr2 − L

r2 + 2µ

h̄2 (E − Vr (r))

)
R(r) = 0, (29)

(
4x(1 − x)

d2

dx2 + 2(2 − 3x)
d

dx
− m2

x
+ L − 2µ

h̄2 Vθ (x)

)
�(x) = 0, (30)

(
d2

dϕ2 − 2µ

h̄2 Vϕ(ϕ)+ m2
)
�(ϕ) = 0, (31)

where m2 and L are separation constants. A noteworthy explanation interested in
these constants is that m is the usual magnetic quantum number and L represents
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the usual centrifugal kinetic energy term, i.e., L = �(� + 1), where � is the angular
momentum quantum number, when the angular dependence of the potentials vanish.
Since the wave function (r) must be finite in all space for the bound states, the
boundary conditions for Eq. 29 require R(0) = 0 and the square-integrability of R(r)
on (0,∞), which implies that R(∞) = 0. The finite solutions for �(θ) in the range
of 0 ≤ θ ≤ π are able to map into a differential equation of hypergeometric type.
Moreover, the boundary conditions for Eq. 31 must be �(ϕ + 2π) = �(ϕ). If we
specialize to the case where Vϕ(ϕ) = 0, then the normalized solution of Eq. 31 that
satisfies the boundary conditions becomes

�(ϕ) ≡ �m(ϕ) = 1√
2π

eimϕ, m = 0,±1,±2, . . . (32)

3.1 The solution of the angle-dependent part

Equation 30 is the θ -dependent wave equation for the NAD potential. To solve this
equation, the angle-dependent part of the Schrödinger equation must be well-defined
in spherical coordinates. The NAD potential is given as follows

Vθ (θ) = h̄2

2µ

(
γ + β sin2 θ + α sin4 θ

sin2 θ cos2 θ

)
. (33)

Substituting Eq. 33 into Eq. 30, keeping in mind the variable x = sin2 θ , the θ -depen-
dent wave equation can be rearranged in the following form

(
4x(1 − x)

d2

dx2 + 2(2 − 3x)
d

dx
− m2

x
+ L −

(
γ + βx + αx2

x(1 − x)

))

�(x) = 0. (34)

Having perform some basic arrangements on Eq. 34, a form which is comparable with
Eq. 4 given by the NU method is obtained

d2�(x)

dx2 + (2 − 3x)

2x(1 − x)

d�(x)

dx
+ 1

[2x(1 − x)]2

×(−x2(α + L)+ x(m2 + L − β)− m2 − γ )�(x) = 0. (35)

When the main equation given in Eq. 4 is compared by Eq. 35, the following polyno-
mials are obtained

τ̃ (s → x) = 2 − 3x, (36)

σ(s → x) = 2x(1 − x), (37)

σ̃ (s → x) = −x2(α + L)+ x(m2 + L − β)− m2 − γ. (38)
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The polynomials given by Eqs. 36–38 are inserted into Eq. 18 and hence the equality
for the polynomial π(s → x) is obtained

π(x) = − x

2
± 1

2

×
√

x2(1+4(α+L)− 8k)+x(8k − 4(m2 + L − β))+4(m2 + γ ), (39)

or

π(x) = − x

2
± 1

2

√
ax2 + bx + c, (40)

where a = 1+4(α+ L)−8k, b = 8k −4(m2 + L −β) and c = 4(m2 +γ ). According
to the NU method, the polynomial π(x) must be a polynomial of degree at most 1.
To provide this condition, the equation of quadratic form under the square root sign
of Eq. 40 is converted to the square of a polynomial. The constant k embedded within
a and b is therefore determined by setting the discriminant of this quadratic equal to
zero: � = b2 − 4ac = 0,

(8k − 4(m2 + L − β))2 − 16(1 + 4(α + L)− 8k)(m2 + γ ) = 0. (41)

After preparing a more suitable arrangement of Eq. 41, a new quadratic equation
according to the constant k is obtained

4k2 + 4k(m2 + β + 2γ − L)+ (m2 + L − β)2

− (m2 + γ )(1 + 4(α + L)) = 0. (42)

The solution of Eq. 42 gives two roots of k individually;

k1,2 = − (m
2 + β + 2γ − L)

2
± 1

2

√
(m2 + γ )[1 + 4(α + β + γ )], (43)

where the signs of plus and minus represent the roots of k1 and k2, respectively. When
the individual values of k given in Eq. 43 are substituted into Eq. 18, the four possible
forms of π(x) are written as follows

π(x) = − x

2
± 1

2

×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[(√
1 + 4(α + β + γ )− 2

√
m2 + γ

)
x + √

m2 + γ
]
,

for k1 = − (m2+β+2γ−L)
2 + 1

2

√
(m2 + γ )[1 + 4(α + β + γ )].

[(√
1 + 4(α + β + γ )+ 2

√
m2 + γ

)
x − √

m2 + γ
]
,

for k2 = − (m2+β+2γ−L)
2 − 1

2

√
(m2 + γ )[1 + 4(α + β + γ )]

(44)
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In Eq. 44, one of the four possible forms of π(x) is used in finding the negative
derivative of τ(x) given by Eq. 9. Other forms are not suitable physically. Therefore,
the most suitable form of π(x) is selected as

π(x) = − x

2
− 1

2

[(√
1 + 4(α + β + γ )+ 2

√
m2 + γ

)
x −

√
m2 + γ

]
, (45)

for k2 = − (m2+β+2γ−L)
2 − 1

2

√
(m2 + γ )[1 + 4(α + β + γ )]. Hence, τ(x) and τ ′(x)

are obtained as follows

τ(x) = 2

(
1 +

√
m2 + γ

)
− x

(
4 + √

1 + 4(α + β + γ )+ 2
√

m2 + γ

)
,

τ ′(x) = −
(

4 + √
1 + 4(α + β + γ )+ 2

√
m2 + γ

)
< 0 . (46)

The key rule of the derivative of τ(x) appears in Eq. 26 which is a polynomial of degree
ν; λ = λν = −ντ ′ − ν(ν−1)

2 σ ′′, where λ denotes k2 + π ′ from Eq. 17. Consequently,
λ and λν are obtained, respectively,

λ = −
(

m2 + β + 2γ − L

2

)

−1

2

[(
1 + √

1 + 4(α + β + γ )
)(

1 +
√

m2 + γ

)
+

√
m2 + γ

]
, (47)

λν = 2ν2 + 2ν + 2ν
√

m2 + γ + ν
√

1 + 4(α + β + γ ), (ν = 0, 1, 2, . . .) (48)

taking σ ′′ = −4. In order to find an expression which is relating to L , the right-hand
sides of Eqs. 47 and 48 must be compared with each other. In this case the result
obtained will depend on the NAD potential’s constants as well as the usual quantum
numbers:

L =
(

1 + 2ν +
√

m2 + γ

)2

+ √
1 + 4(α + β + γ )

×
(

1 + 2ν +
√

m2 + γ

)
+ β + γ, (49)

or

L =
(

1 + 2ν +
√

m2 + γ + √
1/4 + α + β + γ

)2

−
(√
α + 1/4

)2
. (50)

The separation constant L in Eq. 50 contains the contributions that come from the
angle-dependent part of the NAD potential. Of course, when the angle dependence of
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the NAD potential is disappeared by setting the parameters of the potential to zero,
i.e., Vθ (θ) = 0, L equals to �(�+ 1), where � = 1 + 2ν + |m|. It is also pointed out
that the NAD potential has singularities at angles θ = pπ/2 in laboratory coordinates
(p = 0, 1, 2, 3, . . .), as well as at very large and/or very small r . As a result, θ and r do
not take these values once the solution of the Schrödinger equation for the combined
potentials is obtained exactly.

Let us now find the corresponding eigenfunctions for the NAD potential. To find a
solution of Eq. 30, the θ -dependent wave function �(x) can be separated φ(x)y(x),
i.e.,�(x) = φ(x)y(x), where φ(x) satisfies φ′(x)/φ(x) = π(s)/σ (s) given in Eq. 7.
By substituting π(x) and σ(x) given in Eqs. 45 and eq36, respectively, into the expres-
sion φ(x)′/φ(x) = π(x)/σ (x), φ(x) is found

φ(x) = x B/4(1 − x)(1+A+B)/4, (51)

where A = √
1 + 4(α + β + γ ) and B = √

m2 + γ . y(x) represents a second order
differential equation of hypergeometric type given in Eq. 15:

x(1 − x)y′′(x)+ 1

2
[2 + B − (A + 2B + 4)x] y′(x)

−1

4

[
β + γ − L + B2 + B + (1 + A)(1 + B)

]
y(x) = 0. (52)

The polynomial solutions of this differential equation of hypergeometric type are
uniquely determined by the Rodrigues formula:

yν(x) = Bν
ρ(x)

dν

dxν
[
σν(x)ρ(x)

]
, (53)

where Bν is a normalized constant and ρ(x) is the weight function satisfying a Pearson
equation. In the continuous case it has the form

d

dx
[σ(x)ρ(x)] = τ(x)ρ(x). (54)

From Eqs. 37 and 46, the weight function ρ(x) is obtained

ρ(x) = x B/2(1 − x)(A+B)/2. (55)

Substituting Eq. 55 into the Rodrigues formula given in Eq. 53, yν(x) becomes as
follows

yν(x) = Bν2νx−B/2(1 − x)−(A+B)/2 dν

dxν

[
x (ν+B/2)(1 − x)ν+(A+B)/2

]
. (56)

On the other hand, the solution of Eq. 15 can be expressed in terms of the Jacobi
polynomials P(a1, b1)

ν (z), where a1 > −1 and b1 > −1:
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(1 − z2)y′′(z)+ [b1 − a1 − (a1 + b1 + 2)z]y′(z)
+ ν(ν + a1 + b1 + 1)y(z) = 0. (57)

The Jacobi polynomials are one of the orthogonal polynomials which are most used
in the applications. One of the many equivalent definitions of P(a1, b1)

ν (z) is

P(a1, b1)
ν (z) = (−1)ν

2νν! (1 − z)−a1(1 + z)−b1
dν

dzν

[
(1 − z)ν+a1(1 + z)ν+b1

]
. (58)

After the substitution z = 1−2x into Eqs. 57 and 58, these equations become, respec-
tively,

x(1 − x)y′′(x)+ [a1 + 1 − (a1 + b1 + 2)x]y′(x)
+ν(ν + a1 + b1 + 1)y(x) = 0, (59)

P(a1, b1)
ν (1 − 2x) = 1

ν! x−a1(1 − x)−b1
dν

dxν

[
xν+a1(1 − x)ν+b1

]
. (60)

In the new case, Eq. 60 is comparable with Eq. 56;

a1 = B

2
; b1 = (A + B)

2
; Bν = 1

2νν! ; P(B/2, (A+B)/2)
ν (1 − 2x) = yν(x). (61)

Hence, the θ -dependent wave function �(x) in terms of Jacobi polynomials is

�(x) = Cνx B/4(1 − x)(1+A+B)/4 P(B/2, (A+B)/2)
ν (1 − 2x), (62)

where Cν is a normalized constant. The useful projection of Eq. 62 can also be given
in terms of the confluent hypergeometric function F(α1, β1, γ1, z) with parameters
α1, β1, γ1. The representation of this function in terms of Jacobi polynomials is

P(B/2, (A+B)/2)
ν (z) = �(ν + B/2 + 1)

ν!�(B/2 + 1)
F

(
α1, β1, γ1,

1 − z

2

)
,

P(B/2, (A+B)/2)
ν (1 − 2x) = �(ν + B/2 + 1)

ν!�(B/2 + 1)
F(α1, β1, γ1, x), (z = 1 − 2x)

P(B/2, (A+B)/2)
ν (1 − 2x) = �(ν + B/2 + 1)

ν!�(B/2 + 1)
×F(−ν, ν + B/2 + (A + B)/2 + 1, B/2 + 1, x),

(63)

where α1 = −ν, β1 = ν+ B/2+ (A + B)/2+1 and γ1 = B/2+1. The θ -dependent
wave equation in Eq. 62 becomes

�(x) = C
′
νx B/4(1 − x)(1+A+B)/4 F

× (−ν, ν + B/2 + (A + B)/2 + 1, B/2 + 1, x), (64)
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where C
′
ν is a new normalized constant. After some simple manipulations, the L value

given in Eq. 50 can also be obtained by comparing Eq. 52 with Eq. 59.

3.2 The solution of the radial part

Having separate the angle-dependent and radial parts of the Schrödinger equation for a
diatomic molecule, the relevant differential equation for the radial motion is described
by Eq. 29;

(
d2

dr2 − L

r2 + 2µ

h̄2 (E − Vr (r))

)
R(r) = 0,

where Vr (r) is the Coulomb or harmonic oscillator potentials given by Eq. 2 or 3,
respectively;

Vr (r) = − H

r
, (for Coulomb potential) (65)

Vr (r) = Kr2. (for Harmonic oscillator potential) (66)

3.2.1 The case of Coulomb potential plus the NAD potential

The Schrödinger equation for a diatomic molecule can be involved in the Coulomb
potential Vr (r) = −H/r . Since this is a central potential (it has spherical symmetry)
the Schrödinger equation can be separated in different independent equations when it
is expressed in spherical coordinates. One of these independent equations is the radial
part of the Schrödinger equation given in Eq. 29. In the presence of the Coulomb
potential Vr (r) = −H/r , it can be written as follow,

(
d2

dr2 − L

r2 + 2µ

h̄2

(
E + H

r

))
R(r) = 0. (67)

Equation 67 is really just a small generalization of that for the hydrogen atom and it
was solved by Fues [41]. Using the transformation r → s and letting the dimensionless
notations

− ε2
1 = 2µE

h̄2 , ε2 = 2µH

h̄2 , ε3 = L . (68)

Equation 67 can be rewritten in a simple form as follows:

d2 R(s)

ds2 + 1

s2 (−ε2
1s2 + ε2s − ε3)R(s) = 0. (69)
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The complete solution of Eq. 69 by means of the NU method can be found in Ref.
[42], having made of some notation setting. Hence, the energy spectrum with respect
to the quantum numbers n, ν and m is obtained as

Enνm = −µH2

2h̄2

(
n + 1/2 + √

1/4 + L
)−2

, (70)

keeping in mind the value of L given in Eq. 50. The discrete energy eigenvalues are
given

Enνm = −µH2

2h̄2

⎛
⎝n+1/2+

√
1/4+

(
1+2ν+

√
m2+γ+√

1/4+α+β+γ
)2

−
(√
α + 1/4

)2

⎞
⎠

−2

,

(71)

where n, ν = 0, 1, 2, . . ..

3.2.2 The case of harmonic oscillator plus the NAD potential

The harmonic oscillator potential is important because not only does it demonstrate
quantization of energy, but it also shows the phenomenon called quantum tunnelling,
in which an electron can pass into a finite potential barrier, which is not permitted by
classical mechanics.

Adopting the harmonic oscillator potential to Eq. 29, the radial Schrödinger equa-
tion turns into the following form [43],

(
d2

dr2 − L

r2 + 2µ

h̄2

(
E − Kr2

))
R(r) = 0. (72)

In order to obtain an analytical solution of Eq. 72 the radial part of the dimensionless
Schrödinger equation of the harmonic oscillator potential is given by

d2 R(y)

dy2 +
[

2ε1 − L

y2 − y2
]

R(y) = 0, (73)

where

r = y

(
h̄√

2µK

)1/2

; ε1 = E

h̄

√
µ

2K
. (74)

By using a transformation y2 → s in Eq. 73, the translated equation turns into the
following form
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d2 R(s)

ds2 + 1

2s

d R(s)

ds
+ 1

4s2 (−s2 − ε2
2s − ε2

3)R(s) = 0 (75)

where

ε2
2 = −2ε1 (ε1 < 0); ε2

3 = L . (76)

By comparing Eq. 75 with Eq. 15 of Ref. [44] and following the solution steps of the
NU method, the energy spectrum according to the quantum numbers n, ν and m is
obtained as

Enνm = h̄

√
8K

µ

(
n + 1

2
+ 1

2

√
1/4 + L

)
, (77)

keeping in mind the value of L given in Eq. 50. The discrete energy eigenvalues are
given

Enνm = h̄

√
8K

µ⎛
⎝n+ 1

2
+ 1

2

√
1/4+

(
1+2ν+

√
m2+γ+√

1/4+α+β + γ

)2

−
(√
α + 1/4

)2

⎞
⎠ ,

(78)

where n, ν = 0, 1, 2, . . ..

4 Conclusions

In this paper, we have solved the Schrödinger equation for a novel angle-dependent
(NAD) potential. The energy eigenvalues and the corresponding eigenfunctions are
obtained exactly by using the Nikiforov–Uvarov (NU) method. Eigenfunctions are
expressed in terms of Jacobi polynomials for the θ -dependent part of the Schrödinger
equation. The energy eigenvalues are obtained for the Coulomb potential plus NAD
potential and the harmonic oscillator plus the NAD potential. It is seen that the NU
method is an applicable tool for not only central potentials but also noncentral and
combined potentials. The method of solving quantum mechanical problems may be
useful in solving other complicated systems analytically. Results are in good agreement
with the earlier works prepared on the Coulomb potential or the harmonic oscillator.
It is point out that for the values of α, β, γ = 0, the results are in good agreement
with Refs. [42,44]. Moreover, it is also point out that these exact results obtained
for the noncentral potentials may have some interesting applications in the study of
different quantum mechanical systems and atomic physics. These applications can
be accounted for some axial symmetric systems in quantum chemistry, such as some
ring-shaped molecules, i.e., cyclic polyenes or benzene.
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